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Thursday	-	Salle	Dussane,	Ecole	Normale	Supérieure,	45	rue	d'Ulm,	Paris	5th	
	
	
09:00-09:15		 Welcome	and	introductory	remarks	
	
09:15-10:15		 Nathalie	Rochefort	(Univ.	of	Edimburgh)	
	 	 	 Paying	the	brain’s	energy	bill	
	
10:15-10:45		 Coffee	Break	
	
10:45-11:45		 Arvind	Murugan	(Univ.	of	Chicago)	
	 	 	 Energy	dissipation	cost	of	learning	and	computation	in		physical		
	 	 	 systems	

12:00-13:00		 Colloquium	Data	Science		
	 	 	 Wolfram	Pernice	(Univ.	of	Münster)	
	 	 	 Photonic	computing	with	reconfigurable	integrated	circuits	

13:00-14:30		 Lunch	(on	site)	
	
14:30-15:30		 Pierre-Yves	Plaçais	(ESPCI,	PSL)	
	 	 	 Energy	availability	at	the	cellular	and	systemic	levels	controls		memory		
	 	 	 dynamics	in	the	Drosophila	brain	
	
15:30-16:30		 Eva	Garcia-Martin	(Ekkono	Solutions)	
	 	 	 Edge	machine	learning:	theory	vs.	application	
	
16:30-17:00		 Coffee	Break	
	
17:00-18:00		 Damien	Querlioz	(Center	for	Nanoscience	and	Nanotechnology,		
	 	 	 Paris-Saclay)	
	 	 	 Toward	Energy-Efficient	Artificial	Intelligence	with	Brain	Inspiration	

	
	 	



Friday	-	Site	Ulm,	Collège	de	France,	3	rue	d'Ulm,	Paris	5th	
	
09:00-10:00		 A.	Mizrahi	(CNRS-Thales,	Paris-Saclay)	
   Neural	networks	with	radiofrequency	spintronic	nanodevices	
	
10:00-10:30		 Coffee	Break	
	
10:30-11:30		 Julian	Götzl	(Univ.	of	Heidelberg	and	Bern)	
	 	 	 From	biology	to	silicon	substrates:	neural	computation	with	physics		
	
11:30-12:30		 Shahar	Kvatinsky	(Technion)	
	 	 	 On-Device	Machine	Learning	with	Memristors	in	the	Neuromorphic	Era	

12:30-14:00		 Lunch	(on	your	own)	
	
14:00-15:00		 Renaud	Jolivet	(Univ.	of	Genève)	
	 	 	 Energy-efficient	information	transfer	in	brain	circuits	
	
16:00-16:00		 Florent	Krzakala	(EPFL)	
	 	 	 Computing	with	light,	and	Direct	Feedback	Alignement	
	
16:00-16:30		 Coffee	Break	
	
16:30-18:00		 Round	table	animated	by	R.	Zecchina	(Univ.	Bocconi)	
	
	 	



Abstracts	
	
	
Paying	the	brain’s	energy	bill	
How	have	animals	managed	to	maintain	metabolically	expensive	brains	given	the	volatile	
and	fleeting	availability	of	calories	in	the	natural	world?	I	will	first	review	studies	in	support	
of	three	strategies	that	involve:	1)	a	reallocation	of	energy	from	peripheral	tissues	and	
functions	to	cover	the	costs	of	the	brain,	2)	an	implementation	of	energy-efficient	neural	
coding,	enabling	the	brain	to	operate	at	reduced	energy	costs,	and	3)	efficient	use	of	costly	
neural	resources	during	food	scarcity.	I	will	then	present	a	recent	study	from	the	lab	
showing	metabolic	state-dependent	mechanisms	by	which	the	mammalian	cortex	regulates	
coding	precision	to	preserve	energy	in	times	of	food	scarcity.	

Altogether,	these	results	reveal	energy-saving	mechanisms	that	make	energy-costly	brains	
fit	for	survival.	
	

Energy	dissipation	cost	of	learning	and	computation	in	physical	systems	

Since	Landauer,	we	have	known	in	the	abstract	that	information	processing,	and	in	
particular	the	erasure	of	memory,	costs	energy.	In	recent	decades,	this	principle	has	
provided	insight	into	how	specific	biomolecular	processes	spend	energy	to	process	
information.	We	review	work	on	some	of	these	foundational	processes	that	range	from	
correcting	errors,	measuring	with	higher	precision	or	computing	derivatives.	We	also	relate	
such	Landauer	energy	costs	to	the	energy	cost	of	contrastive	learning	in	a	physical	system.		

	

Photonic	computing	with	reconfigurable	integrated	circuits	

Conventional	computers	are	organized	around	a	centralized	processing	architecture,	which	
is	 well	 suited	 to	 running	 sequential,	 procedure-based	 programs.	 Such	 an	 architecture	 is	
inefficient	 for	 computational	models	 that	 are	 distributed,	massively	 parallel	 and	 adaptive,	
most	 notably	 those	used	 for	 neural	 networks	 in	 artificial	 intelligence.	 In	 these	 application	
domains	demand	 for	high	 throughput,	 low	 latency	and	 low	energy	consumption	 is	driving	
the	 development	 of	 not	 only	 new	 architectures,	 but	 also	 new	 platforms	 for	 information	
processing.		
Photonic	circuits	are	emerging	as	one	promising	candidate	platform	and	allow	for	realizing	
the	 underlying	 computing	 architectures,	 which	 process	 optical	 signals	 in	 analogy	 to	
electronic	 integrated	 circuits.	 Therein	 electrical	 connections	 are	 replaced	 with	 photonic	
waveguides,	 which	 guide	 light	 to	 desired	 locations	 on	 chip.	 Through	 heterogeneous	
integration,	 photonic	 circuits,	 which	 are	 normally	 passive	 in	 their	 response,	 are	 able	 to	
display	 active	 functionality	 and	 thus	 provide	 the	 means	 to	 build	 neuromorphic	 systems	
capable	 of	 learning	 and	 adaptation.	 In	 reconfigurable	 photonic	 architectures	 in-memory	
computing	allows	for	overcoming	separation	between	memory	and	central	processing	unit	
as	 a	 route	 for	 designing	 artificial	 neural	 networks,	 which	 operate	 entirely	 in	 the	 optical	
domain.	
	
	



Toward	Energy-Efficient	Artificial	Intelligence	with	Brain	Inspiration	
	
When	performing	artificial	intelligence	(AI)	tasks,	computers	consume	considerably	more	
energy	for	moving	data	between	logic	and	memory	units	than	for	doing	actual	arithmetic.	
This	inefficiency	leads	to	the	unsustainable	energy	cost	of	AI:	training	modern	AI	models	
requires	gigawatt-hours	of	electricity.		Brains,	by	contrast,	achieve	superior	energy	efficiency	
by	fusing	logic	and	memory	entirely,	performing	a	form	of	“in-memory”	computing.	Until	
now	such	an	integration	between	logic	and	memory	was	impossible	at	a	large	scale	using	
conventional	CMOS	technology.	However,	companies	such	as	Intel,	Samsung,	ST	
Microelectronics,	or	TSMC,	have	recently	reached	production	status	on	new	memory	devices	
such	as	(mem)resistive,	phase	change,	and	magnetic	memories,	which	give	us	an	
opportunity	to	achieve	an	extremely	tight	integration	between	logic	and	memory.	
Unfortunately,	these	new	devices	also	come	with	important	challenges	due	to	their	
unreliable	nature.	In	this	talk,	we	will	look	at	neuroscience	inspiration	to	extract	lessons	on	
the	design	of	in-memory	computing	systems	with	unreliable	devices.	We	will	first	study	the	
reliance	of	brains	on	approximate	memory	strategies,	which	can	be	reproduced	for	machine	
learning.	We	will	give	the	example	of	a	memristor-based	Bayesian	machine.	Based	on	
measurements	on	a	hybrid	CMOS/memristor	integrated	system,	we	will	see	that	such	a	
system	can	recognize	human	gestures	using	thousands	times	less	energy	than	a	competing	
microcontroller	unit.	Then,	we	will	present	a	second	approach	where	the	probabilistic	
nature	of	emerging	memories,	instead	of	being	mitigated,	can	be	fully	exploited	to	
implement	a	type	of	probabilistic	learning.	We	train	experimentally	an	array	of	16,384	
memristors	to	recognize	images	of	cancerous	tissues	using	this	technique.	Finally,	we	will	
present	prospects	concerning	the	implementation	of	different	learning	algorithms	with	
emerging	memories.	
	

Neural	networks	with	radiofrequency	spintronic	nanodevices	
	
We	use	spintronic	nanodevices	to	implement	neurons	and	synapses	and	build	artificial	
neural	networks	directly	in	hardware.	These	devices	are	CMOS-compatible,	small,	fast	and	
low	energy	consumption.	Furthermore,	they	can	emit	and	receive	radiofrequency	signals,	
that	we	can	use	to	achieve	dense	connectivity.	Finally,	their	rich	non-linear	dynamics	could	
be	leveraged	to	implement	on-chip	learning.	
	

From	biology	to	silicon	substrates:	neural	computation	with	physics	

Whether	biological	or	artificial,	intelligence	ultimately	boils	down	to	the	ability	of	physical	
substrates	to	perform	(complex)	computations	efficiently.	Understanding	intelligence	thus	
requires	overcoming	a	set	of	interrelated	-	and	interdisciplinary	-	challenges.	Starting	from	a	
subset	of	biological	dynamics	that	computational	neuroscience	identifies	as	relevant	for	
computation,	we	need	to	come	up	with	compatible	models	for	coding,	computation	and	
learning.	Once	these	building	blocks	have	been	identified,	we	would	like	to	find	efficient	in-
silico	implementations,	be	that	in	classical	devices	or	custom-engineered	novel	forms	of	
hardware.	
In	my	talk,	I	will	discuss	some	of	our	answers	to	certain	subsets	of	these	grand	challenges.	In	
particular,	I	will	address	the	following	questions:	

• How	can	cortical	hierarchies	perform	credit	assignment?	



• How	can	deep	networks	learn	precise	spike	timing?	
• How	can	we	emulate	such	neuro-synaptic	dynamics	in	silico?	

	

On-Device	Machine	Learning	with	Memristors	in	the	Neuromorphic	Era		

Memristive	technologies	are	attractive	candidates	to	replace	conventional	memory	
technologies	and	can	also	be	used	to	combine	data	storage	and	computing	to	enable	novel	
non-von	Neumann	architecture.	One	such	non-von	Neumann	architecture	is	neuromorphic	
computing,	where	brain-inspired	circuits	are	built	for	massive	parallelism	and	in-place	
computing.		

This	talk	focuses	on	neuromorphic	computing	with	memristors	at	the	edge.	I	will	show	how	
we	can	get	inspiration	from	the	brain	to	build	electronic	circuits	that	are	energy	efficient	and	
perform	both	inference	and	training	extremely	fast	and	efficiently.	We	will	see	that	this	
approach	can	be	used	not	only	to	accelerate	machine	learning	applications	but	also	for	novel	
mixed-signal	circuits	and	for	near-sensor	processing.		

	
Energy-efficient	information	transfer	in	brain	circuits	
	
The	nervous	system	consumes	a	disproportionate	fraction	of	the	resting	body's	energy	
production.	In	humans,	the	brain	represents	2%	of	the	body's	mass,	yet	it	accounts	for	~20%	
of	the	total	oxygen	consumption.	Expansion	in	the	size	of	the	brain	relative	to	the	body	and	
an	increase	in	the	number	of	connections	between	neurons	during	evolution	underpin	our	
cognitive	powers	and	are	responsible	for	our	brains'	high	metabolic	rate.	Despite	the	
significance	of	energy	consumption	in	the	nervous	system,	how	energy	constrains	and	
shapes	brain	function	is	often	under-appreciated.	I	will	illustrate	the	importance	of	brain	
energetics	and	metabolism,	and	discuss	how	the	brain	trades	information	for	energy	savings	
in	the	visual	pathway.	Indeed,	a	significant	fraction	of	the	information	those	neurons	could	
transmit	in	theory	is	not	passed	on	to	the	next	step	in	the	visual	processing	hierarchy.	I	will	
discuss	how	this	can	be	explained	by	considerations	of	energetic	optimality.		Finally,	I	will	
briefly	discuss	how	energetic	constraints	might	impact	coding	strategies	in	neural	networks	
and	how	this	provides	an	elegant	approach	for	a	more	holistic	view	of	brain	circuits.	
 
 
	


